
CS399I Research

Adam De Broeck

January 3, 2024

The Objective

The key purpose of this project is to develop a technique that is imple-
mentable in a modern game development pipeline for generating procedural
textures. This technique must maintain a handful of properties that allow
for a seamless design pipeline. Firstly, the technique must be easy to use
and iterate upon existing textures given an already formed texture. In order
to satisfy these criteria, simply generating a whole texture in one algorithm,
even when provided knobs and handles to tune the texture is not an ade-
quate solution. Textures will need to be designable in a step by step fashion,
similar to working on a texture within in a typical rasterization program.

Secondly, textures must be visualizable during each step of the creation
process — this is because in order for the textures to have some hierarchical
structure to them, tuning knobs must apply progressively. This is another
reason why a simple input/output algorithm with tuning knobs will not
suffice.

Lastly, the textures must be deterministic and seed-able so that they can
be generated in a guaranteed way at runtime. While not all application will
make use of this property, it’s important to have for applications that have
more sensitive requirements such as image matching.

Ultimately, this leads to three overarching requirements, instruction based
file structure (for the iterative generation approach), a tooling application
for use in designing the textures that will be used, and a library to load and
compile textures at runtime. That being said, there are a couple avenues
of research that will be covered which include: instruction based asset gen-
eration (Farbrausch), traditional texture generation methods (Texturing &
Modelling textbook), ways to apply texture synthesis to tradition methods
(UC Berkley paper), and existing tools for instruction based texture work.
This article serves to give a summary explanation of the sources chosen and
why they will be useful research to the project going forward.

1



Farbrausch: Runtime Assets

The inspiration for this project comes heavily from that of Farbrausch[1],
a German group that are known for their visualizations and demos shown
off at Demoscene and other graphical conferences/conventions. One such
project in particular, .kkrieger, demonstrated a need for “compression” of
asset data in order to fit the entire application within 96KB. While this
project doesn’t aim for compression goals, the tech that they developed in
order to achieve this feat is particularly useful.

In order to achieve this compression Farbrausch came up with a method
of generating the required assets at runtime instead of packaging those as-
sets in with the application. By storing the instructions needed and the
algorithms used in order to create the textures instead of the finalized asset
itself, file sizes could be drastically reduced. The tool(s) that they developed
for this would go on to be their program .werkzeug.

This concept of creating assets from scratch using essentially “scripts” or
commands has useful applications for procedural generation as well. Instead
of having a rigid set of instructions, a user could provide a range of values on
certain parts of the instruction set in order to have the computer randomly
create a range of values to use rather than a predefined one. By allowing
ranges to be set in different steps in the set of instructions, constrained
randomly generated assets could be created.

This project will limit the scope of those assets to textures but the idea
is the same. The benefits of this technique for procedural generation are its
clear hierarchical structure to asset generation as well as an easy to iterate
upon pipeline which should make asset workflows incredibly smooth. That
being said, Farbrausch’s work is available open source on GitHub[2] and the
source provided is a presentation of the thought process behind the tech.
These sources will be invaluable as the foundation of the project.

Existing PCG Texture Methods

Traditionally, procedurally generated textures and/or images use well known
combinations of algorithms, noise generation and mathematical functions to
create some sort of input to output mapping of a given space. If Perlin
Noise takes in parameters to build a continuous functional representation
of noise via octaves, then this type of procedural generation as a whole
does effectively the same but with less randomness and more predictable
patterns. Typically articles on such techniques define a procedural texture

2



as something with infinitely scalability, similar to a fractal or Mandelbrot
set. This property is actually not very useful for the application desired
(video game graphics) and is even at times detrimental — retro games with
intentional pixel art styles. Regardless of this, many of these traditional
techniques provide very useful patterns and ideas for generating textures,
albeit they are typically very “uniform” or “lacking in novelty”.

A great start for looking into such methods is a survey performed and
published by a group of computer science departments from various uni-
versities. The article, Survey of Procedural Methods for Two-Dimensional
Texture Generation[3], describes a wide variety of techniques that can be uti-
lized from cellular automata to Voronoi diagrams to even simulations. This
source not only helps provide a variety of ideas to look at when it comes
to traditional techniques, but it also gives an explanation and overview to
each technique. As such, this article is a great starting place for work on
traditional methods.

The next source is a web article by Shea McCombs[4] as an introductory
in procedural textures. It focuses on the functional side of texture gener-
ation and shows an in-depth explanation of how combining functions in a
2-Dimensional space can create images — very similar to the discrete cosine
transform which is used in JPEG compression. The article also explains a
little behind Voronoi diagrams and noise functions from a functional per-
spective. Even though the scope is very narrow, this source provides great
information about combining functions which is very useful for creating new
functional methods of texture generation by adding together older ones.

The last source for traditional methods is a textbook simply titled, Tex-
turing and Modeling: A Procedural Approach[5]. This book goes into ex-
tremely fine implementation detail for a large number of the mentioned tra-
ditional generation techniques above. If the first source describes the what
for procedural generation, this source describes the how. It’s no surprise
that one of the contributing authors happens to be Ken Perlin, whose noise
algorithm is the backbone of many of these techniques. This source will be
invaluable during the implementation process for each tradition generation
method.

Unfortunately, while all the methods described above are fantastic ap-
proaches to procedural textures, they don’t align with the projects goals
very well. For starters, each method takes some parameters as an input and
provides the built texture from scratch in one pass. Given that the project’s
goal is to design an iterable instruction based toolset, these techniques could
realistically only be used as starting points for a given texture (generating
after some work is already done would simply replace that work).

3



At this point there appeared to be a disconnect with no way of linking the
concepts of both traditional PCG textures and the projects goal of creating
instruction based PCG textures. That is, until stumbling across a small
slide deck from Western Kentucky University.

Texture Synthesis

The aforementioned slide deck, simply titled Texturing: Procedural Texture
Generation[6], describes similar methods to those above — namely noise
based generation — but provides an additional field of study called texture
synthesis. The basic applications of texture synthesis involve expanding a
texture/image to a larger and seamless image based on a smaller original
image — e.g., if the original image is a small portion of a chain-link fence,
then the synthesized image would be the whole fence. Typically, this is
done by image quilting, which involves copying and pasting portions of the
original image and shifting them in order to make them fit together in the
final image. On its own, this technique sounds nice to use as a supplementary
method for the project’s instruction based generation, however, the real use-
case comes when this technique is used to replace parts of an existing image.

By forcing an image quilting algorithm to always match the quilted im-
age best within the center of the image and not just the edges, a donor
texture can effectively be “mapped” onto a receiving texture. The result
is the ability to “apply textures” to other textures. By doing this, all the
previous traditional texture generation approaches suddenly become valid
and usable with the instruction based generation method by texture map-
ping a tradition texture onto a region of the new texture. The slide deck
above is actually a smaller presentation of the original larger proceeding
from a SIGGRAPH conference — Image Quilting for Texture Synthesis and
Transfer[7].

An additional source of texture quilting/synthesis that contains mul-
tiple other papers on the subject (should the need arise) is a web page
maintained by Stanford’s Graphics Department. The page is simply titled,
Texture Analysis and Synthesis[8]. While the first source really just obtains
information from the second source and won’t likely be used, the second
and third source contain an abundance of information regarding the texture
quilting and texture mapping techniques.

4



Other Possible Techniques

One other final technique that is at least worth mentioning is wave function
collapse. Given the grid-like structure of image quilting, it’s possible both
wave function collapse and image quilting could be used at the same time in
order to create a greater depth of variance in the resulting texture. A video
titled, Procedural Generation with Wave Function Collapse and Model Syn-
thesis — Unity Devlog [9], made by a creator that goes by DV Gen explains
some pros, cons, and possible problems when working with wave function
collapse. As an example of how this algorithm can be useful: during the
image quilting process, if a different texture is swapped out mid-quilting (de-
pending on a set of parameters), or the quilting order is changed (depending
on surrounding data), a more organic and less uniform texture could be gen-
erated. This idea takes a lot for granted however, so any attempts to do so
should be treated as an extension to the original project.

Planned Generation methods

Now that it’s possible to use both Farbrausch’s iterative generation tech-
nique and tradition texture generation techniques with the help of texture
synthesis, the question that remains is how PCG will work in the project.
The goal of the project is of course to create a sort of “script” of commands
used to generate a texture. Those commands include traditional generation
techniques as well as some more common operations like selecting portions
of the image, basics shapes, basic effects like distorts or blurs, and more. In
order to let users control which aspect of the texture is procedurally gener-
ated, each command will have an option to provide a random range of values
instead of a concrete value. This lets a user chose where in the generation
pipeline the texture gets a randomly applied element.

While a user is allowed to set everything to be random, it’s very likely
that only specific values should be set to random parameters in order to
achieve like-ness and/or predictable textures. Given the “riff-on-it” nature
of this method, where the algorithm takes a known deterministic texture
and changes it within constrained parameters, this method will be called
the permutation method. A different approach to this is to instead define a
texture solely by its properties. In this case properties would be tagged onto
a texture and would be applied as small “macros” called properties which
are predefined by the user. Each macro would perform a constrained random
operation as a sort of function to an existing input texture. The order in

5



which properties are applied to some base texture is randomly decided by
the generation algorithm.

Naturally, this method will be called the property method. Creating a
tool and structure for performing both methods simultaneously is the final
goal of this project.

Tooling Requirements

There are already some tools which exist that perform similar types of op-
erations to the ones needed in this project. Of course, none of these tools
(that are known) have the capabilities for adding constrained randomness to
their generation methods. However, it should be useful to look at existing
tools for inspiration when creating a smooth and easy to use workflow for
a prospective user. One article titled, TextureLab—Open Source Procedural
Texture Generation[10], provides a video and some links regarding existing
texture creation tools.

This project’s tool has some required properties in order to support
each generation method. The tool must first have some sort of flow to the
instructions; like a scripting language, operations need to have an execution
order. Tools like Unreal’s material graphs and blueprints use connectable
nodes so show flow direction. Unfortunately, this is out of the scope of this
project, so a method of ordered call blocks will be used instead.

The tool must also have a preview interface and a method of “com-
piling” the texture to show current changes without immediately applying
them on parameter change. Additionally, the tool (and textures for that
matter) must be deterministic and seed-able to allow for users to guar-
antee a randomized texture is the same upon texture compilation should
they desire that. The texture files must be written to a file as a simple
set of instructions and/or properties and the tooling must support creating
functions/groups/macros as is required by the property based generation
method. In order for texture synthesis to work, the tool must also support
the creation, movement, duplication and deletion of layers for each texture.

The basic required texture instructions to include are as follows: Selec-
tions (rect, poly, clear, add/override/subtract), Fill, Gradient, Line, Rect,
Circle, Triangle, Poly, Motion Blur, Gaussian Blur, Fragmentation, HSV
Modify, Crystallize, Erode, Dilate, Perlin Noise, Uniform Noise, Transfor-
mation (rotate, translate, scale), Texture Quilting (seamless edge, expand),
Texture Mapping, Dent/Bulge/Warp, and a variety of tradition generation
methods (Voronoi, cellular automata, functions, etc).

6



References

[1] Dirk Jagdmann. The farbrausch way to make demos: Procedural gen-
eration of textures and 3d-objects, 2008. URL https://llg.cubic.

org/docs/farbrauschDemos/.

[2] Farbrausch. Farbrausch demo tools 2001-2011. URL https://github

.com/farbrausch/fr_public.

[3] Junyu Dong, Jun Liu, Kang Yao, Mike Chantler, Lin Qi, Hui Yu, and
Muwei Jian. Survey of procedural methods for two-dimensional texture
generation. Special Issue Networked Sensing for Autonomous Cyber-
Physical Systems: Theory and Applications, 20, 2020. URL https:

//www.mdpi.com/1424-8220/20/4/1135.

[4] Shea McCombs. Intro to procedural textures. URL http://www.upve

ctor.com/?section=Tutorials&subsection=Intro%20to%20Proced

ural%20Textures.

[5] David S. Ebert, Kenton F. Musgrave, Darwin Peachey, Ken Perlin,
and Steve Worley. Texturing and Modeling: A Procedural Approach.
Morgan Kaufmann, 3rd edition, 2002. ISBN 1558608486.

[6] Western Kentucky University. Texturing: Procedural texture genera-
tion. URL http://people.wku.edu/qi.li/teaching/446/cg13_tex

turing.pdf.

[7] Alexei A. Efros and William T. Freeman. Image quilting for texture
synthesis and transfer. SIGGRAPH ’01: Proceedings of The 28th An-
nual Conference on Computer Graphics and Interactive Techniques.
Association for Computing Machinery, 2001. URL https://people.e

ecs.berkeley.edu/~efros/research/quilting/quilting.pdf.

[8] Li-Yi Wei and Marc Levoy. Texture analysis and synthesis, 1999-2003.
URL https://graphics.stanford.edu/projects/texture/. Stan-
ford University.

[9] DV Gen. Procedural generation with wave function collapse and model
synthesis — unity devlog, 2023. URL https://www.youtube.com/wa

tch?v=zIRTOgfsjl0.

[10] Texturelab—open source procedural texture generation, 2020. URL
https://gamefromscratch.com/texturelab-open-source-procedu

ral-texture-generation/.

7

https://llg.cubic.org/docs/farbrauschDemos/
https://llg.cubic.org/docs/farbrauschDemos/
https://github.com/farbrausch/fr_public
https://github.com/farbrausch/fr_public
https://www.mdpi.com/1424-8220/20/4/1135
https://www.mdpi.com/1424-8220/20/4/1135
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
http://people.wku.edu/qi.li/teaching/446/cg13_texturing.pdf
http://people.wku.edu/qi.li/teaching/446/cg13_texturing.pdf
https://people.eecs.berkeley.edu/~efros/research/quilting/quilting.pdf
https://people.eecs.berkeley.edu/~efros/research/quilting/quilting.pdf
https://graphics.stanford.edu/projects/texture/
https://www.youtube.com/watch?v=zIRTOgfsjl0
https://www.youtube.com/watch?v=zIRTOgfsjl0
https://gamefromscratch.com/texturelab-open-source-procedural-texture-generation/
https://gamefromscratch.com/texturelab-open-source-procedural-texture-generation/

