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The Idea
The purpose of this interpolation method is to try to create decent-looking
interpolation curves from a recurrence relation that uses Euler’s method
(semi-implicit) in order to trace out an appropriate curve. Because of this,
this method is not a traditional function, piecewise or other. Instead, the
function places the “cursor” at the first point — this method assumes that
the points have some sort of order to them — and lets it “fall” into the other
points. A similar concept might be placing a satellite nearby a planetary
body. The satellite would “fall” into the planet’s gravity well and as such,
move closer to the planet.

This method is not bound by a standard cartesian based function and
could likely be approximated via a piecewise parametric function, however,
such a function would be worthy of a project by itself and is outside of the
scope of this method. Instead, this method will produce a list of points that
describe the line created by the interpolation — see Possible Extensions for
more information.

The benefits of this method are largely seen in the amount of customiz-
ability that the interpolation function has to create curves of varying shapes
and sizes. Additionally, while the main goal of this method is experimen-
tal in nature, simplicity is another key goal. Unlike Lagrange polynomials,
this method can easily add points to either the middle, or the end without
re-computing the entire function. This method also doesn’t deal with the
increasing complexity required for an NxN matrix via a spline. In the end,
the performance target of this method is not to beat existing methods but
rather stay within a linear O(N) growth pattern.
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The Computation
The basis of this idea stems from a semi-implicit implementation of Euler’s
method and all code was written in C++ — graph plotting was performed
via matplot++ and gnuplot while vector functions were used from the GLM
header library. The goal of this method is to start at the first point and pro-
gressively move to subsequent points while changing “target” after reaching
each one. The functional representation of this is as follows:

~ai =
~xi−~ti

‖~xi−~ti‖2

~vi+1 = ~vi + h~ai

~xi+1 = ~xi + h~vi

Where ~ti is the position of the current target point and h is the current
step size.

The first notable issue that came up before even getting to the algorithm
itself was the step accuracy needed in order to properly detect when the
interpolation had reached a target point. Typically, with floating point
values one must check if a value is within a specific error range, epsilon.
This is because floating point values using the IEEE754 standard do not
have perfect accuracy and thus equality operations cannot be used. When
choosing the epsilon value, a small value in the thousandths would normally
suffice. However, due to the nature of the ever-increasing second derivative
value (velocity), it is incredibly easy to “overshoot” this value and fail to
validly pass the target point by phasing over the point in one step.

In order to fix this error and be able to use values of a wide variety, a
dynamic step size was introduced. After each step of integration, the step
size is recalculated based on the current step’s calculated velocity. This uses
the equation 1

10‖~vi‖ in order to adjust the step size. In code this is as follows:

// Modify future step size
stepSize = STEP_SIZE_MOD * std::min(0.1, 1.0 / (10.0 * glm::length(vel)));

The std::min serves to prevent the step sizes from ever dynamically
re-sizing to a large value — this can cause erratic behavior. Additionally,
the STEP_SIZE_MOD preprocessor definition is used as a scalar to overall tune
the steps sizes used by the interpolation method.
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Unintentionally Stable Orbits

The first step to making this semi-implicit Euler integration work was to
apply a gravitational pull to the cursor using the acceleration function
~ai =

~xi−~ti
‖~xi−~ti‖2

. The code for this is as follows:

// Get vector from current position to current well
glm::vec<2, double> diff = currentWell - pos;
double length = glm::length(diff);

// Modify the diffs magnitude to act as an acceleration
// toward the current gravity well
diff = glm::normalize(diff);
diff *= (1.0 / (length));

After tweaking coefficients by hand and testing a wide variety of values a
pattern emerged. No matter the strength of the gravitational pull, whenever
only one force acted on cursor the resulting line had a tendency toward
creating extremely stable elliptical orbits (albeit rotating) around the target
point. This is of course undesirable as the plotted line must reach the point
to continue. Below is an example of this behavior:

Figure 1: Example of stable rotating orbit around point #3.
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Problems at the Event Horizon

There were a couple of methods used in order break up the stable orbiting
behavior exhibited earlier. One such technique was to implement a sort
of “drag” to the cursor. By limiting the cursor’s max speed, the typical
orbiting behavior could be broken due to the cursor’s existing velocity being
capped and subsequently overpowered by the point that is exhibiting a pull.
This was implemented in code like so:

// Impose a speed limit
if(glm::length(vel) > SPEED_LIMIT)
{

vel = glm::normalize(vel);
vel *= SPEED_LIMIT;

}

In this case, SPEED_LIMIT is a constant preprocessor definition that is
set to 1.0 by default. This speed limit was effective in preventing the cursor
from getting stuck in elliptical orbits around a point, however, it wasn’t
enough as a new problem arose. Below is the resulting attempt which im-
plements a speed limit on the cursor:

Figure 2: Example of the cursor getting stuck around point #4.

Unfortunately, this technique by itself doesn’t solve the problem of the
cursor getting stuck in an orbit around the object. It does however exhibit an
interesting property which is present in certain celestial bodies with extreme
mass for their nearly infinitesimally small (relatively) size — black holes.
Interestingly enough, the cursor’s perfectly circular orbit behaves similar to
light that ends up stuck at the event horizon of a black hole. The cursor’s
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arbitrary speed limit acts the same as the maximum theoretical travel speed
of light, and as such, the same property is exhibited — i.e., the object cannot
move any closer to the body with a gravitational pull as this would violate
the imposed speed limit.

Looking Ahead

In order to break up the new orbiting nature of the cursor, an additional
point can be used simultaneously to act as an accelerator or brake at the
right moments. By adding in a portion of the gravitational pull of the next
point in the list of points, the cursor gets nudged off course which results in it
almost never getting stuck in a loop. This has the added benefit of allowing
a smoother transition between points due to the multi-point influence. The
new code for this secondary point is listed below:

//...
glm::vec<2, double> diff2 = {0.0, 0.0};
double length2 = 0.0;
if(nextWellExists)
{

diff2 = nextWell - pos;
length2 = glm::length(diff2);

}

//...
if(nextWellExists)
{

diff2 = glm::normalize(diff2);
diff2 *= (1.0 / (length2));

}

This finally solves the issues with the cursor getting stuck at points, but
it doesn’t exactly create desirable looking interpolation by itself. See below:
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Figure 3: Example cursor completing line.

From here on out the remaining tweaks are additional coefficients and
changes to specific values in order to tune the interpolation method to get
more smooth results. One of the biggest contributors to getting a more
smooth curve was changing the overall pull strength, the ratio between pull
force from current and next gravity well targets, as well as setting the second
gravity well to push the cursor instead of pull. This resulted in many knobs
that could be hand tuned in order to get the best look for the interpolation.
The code changes for these are below:

// Settings
#define MAX_ITERATIONS 3000 /* Default 3000 */
#define PULL_STRENGTH 4.0 /* Default 4.0 */
#define OPPOSING_FORCES true /* Default true */
#define FORCES_RATIO 2.0 /* Default 2.0 */
#define SPEED_LIMIT 1.0 /* Default 1.0 */
#define STEP_SIZE_MOD 0.5 /* Default 0.5 */
#define REQUIRED_DISTANCE 0.1 /* Default 0.1 */

// Accumulate velocity from gravity wells
vel += PULL_STRENGTH * (FORCES_RATIO / (FORCES_RATIO + 1.0)) * 2.0 *

(diff1 * stepSize) +
(OPPOSING_FORCES ? -1.0 : 1.0) *
(PULL_STRENGTH * (1.0 - (FORCES_RATIO / (FORCES_RATIO + 1.0))) *

2.0 * (diff2 * stepSize));
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Broken Symmetry

After generating graphs for the other point sets it became clear that there
was broken symmetry with this method — this was especially noticeable
for graph #4. Below are representations of the graph when the point set is
traversed forward:

Figure 4: Example graph leaning right.

Due to the nature of the “momentum” that the cursor carries as it moves
through the points, the resulting graph tends to have a bit of a lean to
it. This can be seen as soon as the point set is traversed in the opposite
direction.

Figure 5: Example graph leaning left.
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Typically, the intention for this interpolation method should be for it
be uniform regardless of direction. A quick fix for this problem was easily
achievable by averaging out the results of both sets. In order to do this,
however, the resulting sets of points needed to be equal size. Due to the
nature of how the sets are calculated (They continue to step forward until
either the maximum number of steps have been reached, or the last point is
reached by the cursor) both traversals needed to have the same number of
points. The quick — and admittedly dirty — solution to this was to drop
the last results of whichever set was larger and average them anyway. After
being blended, the first and last points are added back into the results to
ensure the function remains continuous from point 0 to point n. The final
image is as follows:

Figure 6: Example averaged final graph.

It’s important to note that the intention of this method is not to perfectly
pass through the set of input points but rather to get as close as is reasonable
while still making a “good” looking graph.

8



The Results
Graph #1

Graph #2
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Graph #3

Graph #4
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Graph #5

Bonus Graph

// Settings
#define MAX_ITERATIONS 3000 /* Default 3000 */
#define PULL_STRENGTH 0.18 /* Default 4.0 */
#define OPPOSING_FORCES false /* Default true */
#define FORCES_RATIO 100.0 /* Default 2.0 */
#define SPEED_LIMIT 0.5 /* Default 1.0 */
#define STEP_SIZE_MOD 0.5 /* Default 0.5 */
#define REQUIRED_DISTANCE 0.1 /* Default 0.1 */
#define USE_AVERAGE false

11



Possible Issues
In the general case (default values), even when the points are shuffled ran-
domly a decent interpolation curve is generated — this is only a couple of
very similar sets of points, however. It should be noted that the averaging
feature can cause significantly distorted values whenever the forward and
backward set of resulting points are extremely dissimilar. That being said,
the feature should only be used after a known decently symmetric interpo-
lation has been found.

There’s also the untested possibility that due to the somewhat hard
coded values of the step function, this method won’t scale as a set of points
scales — i.e., the larger the scale of the points the straighter the lines,
and the smaller the scale of the points the more likely for the resulting
set to be erratic. As an attempt to tune/prevent small scale sets from
becoming erratic quickly, the STEP_SIZE_MOD preprocessor command has
been provided. Functions that have many sharp edges / turns may also not
perform well with the current default settings or may not fully complete
properly.

Additionally, this method may not scale well in extremely large point
sets due to the step by step nature of the semi-implicit Euler integration
being used. A more traditional interpolation may be desired if speed is nec-
essary. Furthermore, the curves generated are rather “organic” and cannot
be accurately represented reasonably with functions. There’s also no way to
insert some value t in order to get an output (like a parametric function).

Possible Extensions
As a direct solution to the previously mentioned issue of not being a direct
function, a hashmap lookup table may be used in order quickly interpolate
some existing x or y to the closest value on the line. This could be done
by caching both the x and y representations in a hashmap, sorting the key
values to get the closest 2 key representations and interpolating between
their corresponding values. Similarly, if the desired input is some uniform
variable t, then saving and caching the time steps used in order to arrive at
the current value of ~xi could be used instead of x / y keys. This would allow
a uniform lookup of t to get a linearly interpolated value of x and y.

As for the averaging issue experienced earlier where some forwards and
backwards set results are too different to average, another method could be
used instead. Dropping the last values and simply inserting the first and last
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point is crude and often times leads to minor errors / cuts in the continuity
of this method’s second degree integration (~vi).

Finally, using only 2 future points to calculate the next acceleration of
the cursor works well, but this method could be extended to use 3, 4, or
as many points as one desires. It’s possible some interesting behavior may
emerge from the latter if combined with higher dimension functions.
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