
CS355 Final Project

Adam De Broeck

January 4, 2024

The Idea
The core idea behind this project is to discover parallelization techniques
to speed up some existing designs in real time simulations — in this case,
physics simulations for video games. In order to find an appropriate avenue
to parallelize, some previous techniques need to be examined first — most
notably, basic spatial partitioning, which for this project will be uniform
grid chunking.

The vast majority of the code and implementations in this project were
written from scratch, solely for the purpose of researching this design idea.
Some portions of the code will have been re-used as utility functions from
other projects such as the shader compilation code written back in GAM200
for a custom engine. Like-wise, the libraries used in this project are the
OpenGL bindings library, GLEW, the window and IO handling library for
OpenGL, GLFW, the OpenGL-based linear algebra mathematics library, GLM,
and finally the UI rendering library, ImGui.

Because this project and its graphics were written primarily on a Win-
dows machine and setting up the project for other operating systems would
take addition and unnecessary time, the graphical application portion of this
project is design to be run on Windows only. That being said, the entirety
of the code in this library is written with C++.

Additionally, there are limitations to the physics and collision calcula-
tions used in the project. Extremely simple bounce resolution and circular
collision detection were used, as the actual implementation of these meth-
ods doesn’t affect the spatial partitioning implementations. For the physics,
semi-implicit Euler integration was used, as it is typically easy to implement
without much effort.

1

The application controls for this project are as follows:

Left Click — Spawn new ball at cursor

Space — Enable/disable vortex physics

Left Shift — Spawn 1000 balls randomly

Control — Enable/disable graphics

Alpha Num Keys 1–4 — Change optimization type

Numpad Keys 1–9 — Change thread count

Real-Time Physics Approximations
As previously mentioned, the physics method used for this project was a
semi-implicit implementation of Euler’s method. To sum the technique up
briefly, each discrete time step of the physics engine calculates the acceler-
ation, velocity and subsequently future positions of all objects in the scene.
Acceleration and velocity vectors are scaled by the last frame’s average time
step in order to account for varying framerate. Mathematically this tech-
nique is represented as such:

~vi+1 = ~vi + t~ai

~xi+1 = ~xi + t~vi

Where t is the current time step size, ~vi+1 is the new object velocity, and
~xi+1 is the new object position.

With the integration technique out of the way, the physics engine still
needs collision detection and resolution. Fortunately, because this project
solely uses circles in the physics demonstration, these calculations are rela-
tively easy. In order to determine if two physics bodies (circles) are overlap-
ping, their radii can be compared to their current distance, as each object
has a uniform distance to all points on its circumference. If the combined
radii of the two circles in question are larger than the distance between the
center of both circles, then the circles must be overlapping. Even better,
this method works for any size of circle and mismatching sized circles. In
code, the implementation used in this project likes like this:

2

void CheckAndResolveCollision(Ball *collider, Ball *other)
{

// Check for collision
float distanceBetween = glm::distance(collider->getPosition(),

other->getPosition());
float combinedRadii = collider->getRadius() + other->getRadius();
if(distanceBetween > combinedRadii)

return;

. . .

After collision detection has verified that two circles are indeed overlap-
ping, the circles must be corrected so that they are forced outside of one
another. Again, for circles this is a very easy calculation. The overlapping
distance can be calculated via combinedRadii – distanceBetween. Once
this is obtained, either the first circle can move in the opposite direction
of the colliding circle (this works because a collision point of a circle-circle
collision will always be parallel to the normal of the surface of each cir-
cle’s circumference) or both circles can move half the distance each. In this
implementation, both circles will move half the distance. The rest of the
previous function can then be completed via the following resolution code:

. . .

// If colliding, move the collider out of the other ball
glm::vec2 direction = other->getPosition() - collider->getPosition();
if(glm::length(direction) < 0.0001f)
direction = glm::vec2{0.0f, 1.0f}; // Account for perfect overlap
direction = glm::normalize(direction);

glm::vec2 reversePen = -1.0f * direction;
reversePen *= (combinedRadii - distanceBetween);

collider->setPosition(collider->getPosition() + (reversePen / 2.0f));
other->setPosition(other->getPosition() - (reversePen / 2.0f));

}

The final piece of the puzzle to have a half decent physics implementation
for circles is to have each circle rebound off of other circles and the walls of
the space. Typically this rebound amount is a float scalar from 0.0f and
1.0f which represents the percent of the ball’s velocity that is preserved in
the elastic collision. This works perfectly for the walls of the space because
they are aligned with the axis of the world — therefore, to calculate a
proper rebound, the x or y component of the ball just needs to be reversed
and multiplied by the ball’s restitution value.

3

For ball-ball collisions however, the ball must bounce appropriately off
the tangent of the collision point for any given ball which can occur at any
point on the ball’s circumference. It turns out, this isn’t too difficult either,
however it requires some additional linear algebra.

To get the correct rebound vector, the tangent to the collision point
must first be calculated. This can be done by getting an orthogonal vector
from the direction vector (which is subsequently the normal vector of the
collision point) by using the “switch and flip” technique — switch the x and
y components and flip the sign on either of them. In R2, this will always
give an orthogonal vector.

At this point, the correct rebound direction can be found by getting the
orthogonal projection of the velocity vector of the colliding ball onto the new
tangent vector. Once this vector is found, subtracting it from the current
velocity twice will give the correct rebound vector for any collision angle in
a circle-circle collision.

That’s a bit of a mouthful, but it can be all summed up in one image:

Figure 1: Ball-Ball collision and rebound resolution.

4

A Naïve Approach to Collisions
A typical first approach to checking collisions in a physics engine is to iterate
over all of the physics objects in the scene and integrate their position. After
integration, the objects are then subject to collision detection and resolution
for other objects. A naïve approach to this is to simply loop over all of the
objects again, for each object, and check collisions (ignoring the same object
of course). It doesn’t take much to immediately notice that the growth
pattern of such a method is O(N2) and does not scale for large numbers of
objects at all.

There are a number of ways to improve upon this system. Some involve
polling the space in front of an object which is owned by a top level container,
others use clever “boxing” methods to only check for collisions that have a
possibility to occur. Both of these techniques are spatial in nature, however,
for this project the latter will be used. Specifically a system of grids called
a chunk map. The purpose of this map is to keep spatially local objects
together so that they don’t need to check collisions with all other objects.
This method doesn’t eliminate the O(N2) growth pattern but instead makes
the scaling properties of such a pattern nigh impossible to have occur in
practice. Such a method might be referred to as a “Divide and Conquer”
method.

Below is an example of an O(N2) approach to collision detection with
no spatial partitioning:

Figure 2: Choppy framerate from a bad physics implementation.

5

The above simulation typically runs at a locked 144fps and 6.5ms frame
time on the testing hardware (more details on that later). As can be seen
here with the naïve implementation, frame times skyrocket to more than
20x that of the original application.

Spatial Partitioning Implementation
As briefly mentioned before, the solution to this problem can be found in
spatial partitioning. The implementation details for the partitioning method
used in this project are like so: At the beginning of the application, create
a hash map that takes coordinates as a key and stores a hash set of physics
objects as the key. Whenever an object is spawned, the object registers its
position in the hash map, accurately named chunkMap. Each frame, the
chunk map is cleared and the positions of all objects in the scene are re-
cached into the chunk map. For simplicity sake, the coordinate space of the
chunk map is simply the position of the physics object but truncated to a
32-bit integer rather than a float.

Next, when iterating over the physics objects in the scene, instead of
iterating over all of the objects, iterate over the chunks available in the
map. For every physics object in a given chunk, integrate it and perform
collision chunks with all adjacent chunks. This prevents physics objects from
needing to calculate possible collisions with objects that are too far away.
The size of a given chunk affects how well this technique will work. Too large
of chunks will fail to localize enough collisions, and too small of chunks will
require magnitudes more overhead in adjacent chunk calculations.

There is a slight problem with this technique which is quite similar to
another known physics simulation phenomenon. Objects that are moving
very very quickly may pass directly over chunks or objects themselves. They
could even pass outside of the adjacent chunks used for collision detection.

In this project, this problem was ignored as objects typically didn’t move
that fast nor was it a concern for later parallelization efforts (obligatory,
“leave this exercise to the reader”). Just by introducing a chunk map into
the mix and using basic spatial partitioning techniques the previous example
with 4k objects in the scene goes from a whopping 7fps and a 143ms frame
time to 116fps and an 8.6ms frame time. That’s almost back to the original
frame time that uses no collisions at all!

Below is an example of that chunking system in action:

6

Figure 3: Stable framerate using chunked spatial partitioning.

Multi-Thread The Chunking
Everything so far has just been an appetizer for the main course. Again, the
real reason for this project was to find avenues for parallelization. Now that
the chunking system is in place, there’s a unique property that the spatially
local collisions can now guarantee. Because the chunk map will never do
calculations for physics objects outside of adjacent chunks, it’s practically
free for optimization via multi-threading. All this needs is a pattern on how
to “hand-over-hand” the data and the rest will fall into place.

Given the grid-like nature of the chunk map, it’s tempting to use a
checkerboard pattern as a start. For the most part this works pretty well
if you ignore the corners and it would allow for 2 passes over the entire
simulation space. Each pass would queue up jobs to be put into a bucket
which is then accessed by a thread pool and processed. Because of this, it
is also simple to use any amount of threads desired.

A theoretical/graphical implementation of the checkerboard pattern might
look like this; where yellow is the currently operating-on chunk by a thread,
blue are other possible operating threads green is a valid chunk that no
thread is writing to and read is a thread that is being written to:

7

Figure 4: Checkerboard fails to get concurrent non-overlapping access to
each chunk in one pass.

To fix the above problem, the space between working tiles can be in-
creased so that there is always a space in-between, even on diagonals. This
solves the concurrent writing issue, while increasing the total number of
passes to 4. The outside loop can then traversal all chunks in the space by
using a Z patterns.

This is what that might look like:

Figure 5: Fixed diagonal chunk overlap, passes increased to 4.

8

Unfortunately, this works if collisions detection and resolution only acts
on the colliding ball which is owned by the center chunk. However, a decent
number of collision resolution techniques prefer to act on both colliding
objects as it makes the physics more stable — this project also acts on both
objects. Because of this possibility, the thread that acts on the center chunk
must have write access to adjacent chunks in order to store the second half
of the collision data back into the other colliding object. This can be fixed
by doing essentially the same thing as the previous fix — moving the chunks
further apart.

Figure 6: Fixed adjacency write issues again, passes increased to 9.

This adds a minor amount of overhead to the entire process. However,
the amount added is near negligible in comparison to how expensive the
collision detection and resolution code is — therefore, it’s an acceptable
tradeoff.

The last part of the multi-threading technique is to write the thread
pool implementation. In order to easily get all of the threads to run at the
appropriate time to process a singular batch, a barrier was used. Specifi-
cally a std::barrier which was added to the C++ STL in standard version
20. This is nice, because it means a new barrier implementation wasn’t a
necessity to write for this project.

9

The code that batches and processes all of the adjacent chunks into the
thread safe queue (uses a mutex) is as follows:

if(physicsType == PhysicsType::THREADED_CHUNKED_PARTITIONING)
{

for(int i = 0; i < 9; ++i)
{

if(numThreads == 0) break;

int chunkXOffset = i \% 3;
int chunkYOffset = i / 3;

// Create work orders for each chunk
for(int chunkX = -10; chunkX <= 10; chunkX += 3)
{

for(int chunkY = -10; chunkY <= 10; chunkY += 3)
{

Util::Coordinate coord(chunkX + chunkXOffset,
chunkY + chunkYOffset);

if(chunkMap.find(coord) == chunkMap.end()) continue;
if(chunkMap.at(coord).empty()) continue;

// Generate work that needs to be done
WorkOrder order;

. . .

// Add to work queue
// (technically this doesn't need to be locked)
{

std::lock_guard<std::mutex> lock(workQueueLock);
workQueue.push(order);

}
}

}

// Start thread pools
rendezvous->arrive_and_wait();

// Wait for thread pools to finish
rendezvous->arrive_and_wait();

}
}

(It’s possible to use the main thread to do work as well but there wouldn’t
be any addition gains as it would be no different than the main thread
sleeping while another thread operates — effectively it’d just be like adding
another thread)

10

Performance Results
Initial results from the spatial partitioning implementation over the naïve
implementation were already very good, however, the multi-threaded perfor-
mance increase was staggering. After further analyzing the data, like most
multi-threading approaches, the gains from adding more threads typically
tapers off with diminishing returns.

Surprisingly the multi-threaded approach was so good that it almost
kept up with the baseline No Collisions demo (full framerate) up until
8,000 objects, which is typically when the graphics pipeline starts to slow
down from driver overhead if a user doesn’t switch to using instanced draw
calls (something that was outside the scope of this project). Because of this,
a keybind to disable the renderer was added in order to get more accurate
results for larger object count tests.

Below is a table of the average frame timings of each method with a
given object count:

Multi- Multi- Multi- Multi-
Object No Naïve Spatial Thread Thread Thread Thread
Count Collisions Collisions Partitioning (2) (4) (6) (8)
——- ———— ———— ————– ——— ——— ——— ———
1,000 6.9ms 12.2ms 6.9ms 6.9ms 6.9ms 6.9ms 6.9ms
2,000 6.9ms 45.5ms 6.9ms 6.9ms 6.9ms 6.9ms 6.9ms
4,000 6.9ms 194.4ms 8.7ms 6.9ms 6.9ms 6.9ms 6.9ms
8,000 6.9ms 864.0ms 32.4ms 17.6ms 11.2ms 9.8ms 9.2ms
16,000 6.9ms 3,770.0ms 143.3ms 91.5ms 59.6ms 49.2ms 49.8ms
32,000 10.2ms 15,820.0ms 942.0ms 191.0ms 172.4ms 169.5ms 169.2ms

When graphed, the changes in speed become even more apparent:

Figure 7: Graph of each method’s timings over the number of objects tested.

11

Additionally, here is a graph of the scalar magnitude increases in speed
compared to the naïve implementation as the implemented method gets
better for each object count test.

Figure 8: Object count performance gains over baseline as methods change.

Possible Extensions
This project only served as a theoretical baseline to how spatial partitioning
can be parallelized. There are many other techniques that might work even
better than grid based chunk.

When a couple ideas come to mind, the first which might be a significant
challenge but could pose a very interesting result is using dirty quadtrees
instead of chunking. Typically these types of structures are much more ef-
ficient than having constant sized grids. As long as a user could effectively
determine if a quad tree was overlapping, the same principles of paralleliza-
tion can apply. It’s possible to use Axis Aligned Bounding Box detection
for such an implementation.

Another possible improvement would be the further optimization of code
and/or data structures used in the project. The only major optimization
that was thought of before starting the project was to use hash maps for the
chunk structure as hashing of coordinate pairs is extremely quick. There
may be other data structures or algorithms that could speed up the rest of

12

the implementation. One thought that comes to mind is not re-populating
the chunk map every frame, but rather re-registering objects to the chunk
map only if they cross chunk boundaries.

Finally, this implementation chooses to completely avoid what happens
if an object is moving too quickly to be considered in either its parent chunk
or adjacent chunks. This means that objects that move too fast tend to
completely skip the collision detection phase which is not desirable. A pos-
sible solution to this would be to do a pre-pass to get the fastest moving
object and divide the time step into multiple passes such that each pass
cannot physically allow the fastest moving object to cross a whole chunk in
one frame.

13

