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1    Introduction 

Can a planning AI architecture predict player behavior? Jeff Orkin posed this question at the 

Game Developers Conference in 2006. We were motivated to explore this novel idea in 

tandem with the concept of creating a more granular musical interpretation of feedback in 

relation to player prediction. Therefore, our aim was to create an experimental proof of 

concept for the pipeline of predicted player actions to audible player guidance. To that end, 

we created a system for procedurally generated music to supplement an AI planning 

architecture. 

 For choice of planning architecture, we opted for a hierarchical approach since it 

more closely resembles the way that humans solve problems. Accordingly, for the PCG 

music, we decided to take a top-down approach to more favorably riff on existing input 

music, rather than generate music from scratch. This is because generating music from 

scratch is more constraint-based and does not give enough control to musicians and 

composers. 

2    Planning AI Architectures and Predicting Player Behavior 

In the early 2000s, existing AI architectures such as Finite State Machines (FSMs) were 

limiting the ability of game developers to build robust, scalable AI. Several solutions were 

developed independently to address this need. Damian Isla developed the Behavior Tree 

architecture for Halo 2. Jeff Orkin based his GOAP planning architecture on the STRIPS 

planning system from academia and was the first to use planning in a video game [Orkin 

06]. Orkin’s work with GOAP was the precursor for both classical and hierarchical planning 

architectures used in various games over the years. 

 

2.1    Differences Between Classical and Hierarchical Planning 

Both GOAP and STRIPS are considered “classical” planning architectures. They run a 

search to find a sequence of actions that change the initial world state to the desired goal 

world state. In contrast, a Hierarchical Task Network (HTN) starts with a compound root 

task, matches it to a suitable method, decomposes the method's tasks recursively, and gives a 

sequence of directly actionable steps that are equivalent to the root task. 

While the search techniques of classical planning and hierarchical planning differ, 

they ultimately both yield a sequence of actions that satisfy the given goal or accomplish the 

root task. They operate on an abstraction of the game world called “world state.” Both 

classical and hierarchical planning start with the parameters of the initial world state. They 

validate the preconditions of actions against the current modelled world state and maintain 
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this model by applying the effects of planned actions to the world state model. This is a 

notable difference between planning AI architecture and other architectures such as 

Behavior Trees. Planning can consider the compound expected effects of planned actions 

when choosing further actions [Humphreys 13]. 

 

2.2    Our Puzzle Demonstration App 

For our exploration of predicting player behavior with planning, we favored the hierarchical 

planning approach, as it has more similarities with the way that humans solve complex 

problems: by breaking them down into smaller, more manageable parts. 

To demonstrate HTN planning in action and explore its player-predicting potential, 

we devised a simple top-down puzzle where the player moves an agent through a series of 

rooms with the goal of reaching the designated exit. A series of locked doors block the way 

through the puzzle. Each door has a color and matches a corresponding pressure plate. When 

the player moves the agent over a pressure plate, the door of the corresponding color 

unlocks and opens. If the player opens an appropriate sequence of doors, the agent can be 

moved to the exit and the puzzle is solved. 

 

 
Figure 2.1 The initial state of the puzzle of our demo project 
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2.3    How HTN Planning Works 

HTN planning operates on a stack of tasks, starting with just one task: the root task. For our 

puzzle, the root task for the planner is ReachExit. There are two types of tasks: compound 

tasks and primitive tasks. Compound tasks, like ReachExit are not directly actionable by an 

agent, so they cannot be added to a final plan. Compound tasks must be decomposed into a 

series of more granular tasks. A compound task might be decomposed into only primitive 

tasks, only compound tasks or some combination of both. To decompose a compound task, 

the planner searches the list of available methods to find a match for the task at hand. The 

preconditions of each method are compared against the current world state until a method is 

found for which all preconditions are met. 

Next, the decomposed composite task is popped from the task stack and replaced 

with the tasks specified by the selected method. This is a direct replacement of the popped 

task with tasks that, taken together, are equivalent to that popped task. Note that when a 

composite task is decomposed, neither the world state model nor the plan is modified, only 

the task stack. 

A primitive task is a task that is directly actionable by an agent; it also cannot be 

decomposed into more granular tasks. In our puzzle demo, all primitive tasks are MoveTo 

actions that have a parameter of which grid space the agent should move to. When the 

planner pops a primitive task from the task stack, it does not push anything back onto the 

task stack. Instead, the effects of the action are applied to the world state model and the 

action is appended to the end of the plan. 

If the planner empties the task stack, this means that the plan contains exactly the 

primitive tasks that are equivalent to the original root task. In our puzzle demo, a finished 

plan is made of only MoveTo actions that, when executed by the plan runner, will move the 

agent from its initial position to plates and through doors until finally arriving at the exit. 

 

2.4    Planning for AI Agent Control vs. Planning for Player Prediction 

In our demo, at startup, the agent is under direct control of the player. Every time the agent 

moves from one grid square to another while under player control, a re-plan is initiated, and 

the resulting plan is printed to the console window. We argue that this plan is a plausible 

prediction of player behavior. Under what conditions does our planner effectively predict 

player behavior? When does it not? 

 The planner and world state model that we designed finds one solution to the puzzle 

that minimizes the number of doors the player must open to reach the exit. If the demo is 

changed to planner control of the agent at any point, the plan runner executes the steps of the 

generated plan and guides the agent to the exit. This is literally AI control of the agent. 

 What is the difference between using planning to choose AI behavior and using 

planning to predict player behavior? Consider the most straightforward scenario: the player 

has full knowledge of the game world, understands how to win, and executes perfect play. If 

the planner can find an optimal solution to a scenario, then the likelihood of the planner 

predicting the player’s behavior should depend only on how many different optimal 

solutions there are starting from the given initial world state. Recall that initial world state 

refers to the modelled world state that is the input to the planner at the beginning of a plan or 

a re-plan; it is not necessarily the initial state of the game world in general. 
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What if the player cannot or may not have perfect knowledge about the game world? 

Then the domain of the planner would need to operate on a restricted set of possible 

methods for some or all tasks. Some way of determining what a player can know or likely 

knows must be used to restrict which methods are matched to a given task at the time of 

compound task deconstruction. 

In a more complex game, what if the player is not skilled at the game? Perhaps they 

have some other priority than winning in the most efficient way possible? These factors 

would also need to be reflected in the availability of methods that the planner can match to 

tasks. In a more complex game, Player Modelling techniques could be used to track player 

traits, and method availability for tasks could be determined based on those traits.  

3    Procedurally Generated Music as a Means of Player Feedback 

In order to visualize how we can use planning to predict player movements and behaviors 

we first need a method of feedback that will work well with our system. To keep the 

theming of AI, we chose to create and implement a form of procedurally generated music. 

By doing so, we can tweak values of how the music is generated as a means of guiding the 

player based on the predicted player movements and behaviors. For example, if the player 

chose to go in the opposing direction of the currently decided subgoal for completing a 

puzzle that they had been given, the music might decide to change its position/volume, how 

active it is (total activity in terms of playing notes) or even its nature (major/minor/key). 

Being able to control these parameters on the fly makes auditory feedback simple to 

program while still being flexible enough to use in a wide variety of situations. 

How does this differ from traditional techniques though, and why go through the 

effort of writing an entirely new system instead of using established techniques? A very 

common approach to music design in the game industry is a combination of two methods of 

musical composition. The first being horizontal re-sequencing, a method in which pre-

composed sections of music are cut and pasted in different ways in order to create dynamic 

looping tracks. The second method is vertical re-orchestration where selected 

elements/instruments in the composition are added or removed on the fly to change the total 

“busyness” of the track or to set a different undertone. These techniques are widely used in 

games like Halo and even Mario Kart to either fit a finite track into an undeterminable 

amount of time — common in large battle scenes across the Halo games — or to change the 

overall tension or excitement in the music to match a scenario in the game — this can be 

seen in Mario Kart during the level, character and kart selection screens; as the player gets 

closer to starting a race, instruments are added to increase intensity. 

These techniques are great at creating music that can adapt to a given situation 

(hence why they are called adaptive music techniques) but do not offer the granularity 

required for something like instantaneous player feedback. Instead, we need to be able to 

alter not just the sequences/clips of music tracks but rather the notes themselves. The 

technique that we came up with borrows a lot of concepts from adaptive music and uses 

them with other PCG approaches in order to create something that would both sound 

reasonable and work as instantaneous player feedback. 
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3.1    Choosing an Approach 

We identified two distinct approaches to creating procedurally generated music: top-down 

and bottom up. Both approaches have their own pros and cons that need to be considered in 

order to decide which method is more applicable. Creating music entirely from scratch in a 

bottom-up approach allows for much more variance in the outcome. However, this type of 

music generation relies entirely upon “levers and knobs” in order to tweak the output into 

something that is not only usable but also thematically relevant — this is on top of the fact 

that creating something that sounds musically ideal in the first place is no easy feat. Using a 

bottom-up approach would require setting a significant number of constraints and tweaking 

many settings to get the desired results. This doesn’t even consider the practical applications 

and how difficult it would be to use from a music pipeline point of view (I.e., musicians and 

composers don’t want to tweak hundreds of variables in order to make music). 

The other approach, top-down, is significantly more usable by musicians/composers 

as it tries to replicate and/or “riff” on existing music that it is given. This not only makes the 

technique more in line with existing adaptive music but also happens to be significantly 

easier to program. By choosing to replicate existing music, we can cut out the entire process 

of creating/managing constraints needed to reign in randomly generated music to our theme. 

We can also write existing music that we want the application to sound like (thematically) 

and directly use that in order to generate new music, something that is much more akin to 

adaptive music.  

Given that the application needs to be able to also play music and not just generate it 

(after all, we are trying to achieve auditory feedback) we had to choose a method of playing 

music. Since we planned on playing individual notes and not clips of music, recording each 

individual note and how they play — aka sampling — would be extremely tedious. On top 

of this, the ability to do exactly that is already something that has been available for over 40 

years. Naturally, the best option for audio playback in this scenario would be MIDI. Most 

systems already have virtual MIDI outputs that play audio directly to the system’s audio 

service. Not only would this make playing generated music easier, but it would also allow 

for better scalability of the tech that we were designing. In the future, one could expand the 

MIDI capabilities of the generator and change out even the instruments used in order to 

achieve any type of audio they so desired. For this purpose, MIDI was a clear choice (we 

chose to use RtMidi which is a MIDI general purpose library for C++ for our demonstration) 

 

3.2    Implementation 

It was briefly mentioned that our implementation would use a top-down approach. This 

would help create replicable examples of audio that could be used for future audio 

generation. To do this, our audio “scene” — for lack of a better word — would need to have 

a hierarchical structure to it. For our demonstration, we chose to keep things simple and used 

a 16-bar chord cadence as our input audio to be riffed on. At the top layer would be patterns 
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that represent 4 measure chord cadences — each pattern is 4 measures, hence the 16-bar 

chord structure. Then, for the resulting 4 measures in each pattern, each note would be 

generated to match the similarities in an existing input pattern. 

This means that we would need 2 layers of procedural content generation: one to 

generate patterns, and another to generate individual notes in those patterns. Since patterns 

could be mostly entirely random with a couple of given constraints, we chose to go with 

something very simple, filtered random. Note generation on the other hand, would need to 

match existing note patterns in the music input. Luckily, there happens to be a nifty 

technique for doing something quite similar — ngram generation. By assuming that all notes 

in our input data are “history” and all notes in the selected pattern for future note generation 

are “recent history” we can come up with a data driven method of generating new notes 

based on examples of previous notes. 

 

3.2.1    Using Filtered Random Pattern Generation for Chord Cadence Flow 

As mentioned previously we chose to use filtered random for generating new patterns. These 

patterns represent the order of 4 measure cadences of chords and by randomizing their order 

we come up with a similar idea to horizontal re-sequencing — the only difference is that 

instead of looping in a specified order, we make up the order as we go. Generating 

completely random patterns isn’t necessarily a good idea though. Two ending sequences of 

chords back-to-back wouldn’t sound very good and likewise, neither would two beginning 

sequences. There are also some transitions between patterns that just do not sound very 

good. In order to account for these problems with random pattern generation we can use 

filtered random. 

In the context of pattern generation for music, filtered random works like so: 

Generate a new pattern and check the pattern against the history of previously generated 

patterns (see Figure 3.1). If the pattern breaks any pre-defined rules about which future 

patterns are possible, ignore the new pattern and generate another new pattern. Repeat this 

operation until a valid pattern is found. The pseudo code for this looks like: 

 

Listing 3.1 Function to generate new filtered patterns. 
int[] GeneratePattern(int length, int range,  

                      int[] prevPattern) 

{ 

    int[] result; 

   

    // Generate 'length' new patterns to add to this one 

    for(int i = 0; i < length; ++i) 

    { 

        int newPat= 0; 

  

        // Check if prospective Pattern is valid 

        int timeout = range * 2; 

        do 
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        { 

            newPat = random(0, range); 

            --timeout; 

        } 

        while (!checkValid(prevPattern, newPat) &&  

               timeout >= 0); 

  

        // If pattern is valid, add to result 

        result += newPat; 

    } 

   

    return result; 

} 

 

This works well for the most part, however there’s a minor pitfall that will cause this 

generator to get stuck in an infinite loop. If our possible patterns for generation are too small 

and there exist too many rules, it is possible to create a situation where no pattern that is 

generated will be a valid pattern. To fix this problem, we can implement a timeout counter 

that will force a pattern to be chosen if more than x number of tries has happened. This value 

will have to be hand tuned as too high of a value could incur performance penalties and too 

low of a value may be too lenient (if there are many rules). In our demonstration we found 

that a value of twice as many attempts as the number of possible generated values works 

well — this is entirely arbitrary, however. The fix looks like this: 

 

Listing 3.2 Fix to infinite loop in pattern validation. 
// Check if prospective Pattern is valid 

int timeout = range * 2; 

do 

{ 

    newPat = random(0, range); 

    --timeout; 

} 

while (!checkValid(prevPattern, newPat) 

       && timeout >= 0); 
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Figure 3.1 An example of a pattern sequence and valid/not valid new patterns.  

 

3.2.2    Creating Melodies and Chords with Ngrams 

Now that we can come up with valid patterns that will sound musically pleasing, we need to 

fill those patterns with notes. To do this we opted to use Ngrams, there’s a couple reasons 

for this. Firstly, ngrams work great at detecting the occurrence of a specified pattern in a 

previous history of existing patterns. By assuming that the set of all possible notes from our 

input are valid history during a generation call, we can match our note history with said 

notes and come up with a reasonable method for calculating future notes. Of course, we 

would prefer to generate future notes that are similar to the upcoming pattern and not just 

any pattern (we want our music to have structure after all and not sound random). To do this 

we can give selected notes weights and calculate the probability of each, but more on the 

later. 

Before we can generate new notes based on ngrams we need to be able to first 

specify how ngrams exist and how to load them into the program. To do this, we came up 

with a very simple file structure that is delimited by spaces for specifying existing note 

ngrams. There exists 1 file for each instrument. During file read, the program first takes in 

the number of styles that exist for a given instrument and then how many patterns exist for 

that style. Next is the number of notes/chords (chords and notes are indistinguishable, I.e., 

notes are just single chords) for each pattern followed by each specific note/chord. 

Notes/chords have 4 values, the number of notes played in the chord/notes, the duration of 

the chord/note, the number (MIDI pitch) of the note to be played and the velocity of the note 

press (similar to volume). All of this note data is loaded at runtime and used to compare 

against in order to generate new notes — it was written by hand from the original 

composition used as an example (see Figure 3.2).  

 



9 

  

 
Figure 3.2 An example ngram file to be loaded and used to generate new notes. 

 

Now that we’ve loaded the data, we need in order to generate new notes we have to come up 

with a method for deciding which notes to use. We want the possibility of using notes that 

aren’t from the pattern we specify during generation —this is for a couple of reasons. 

Firstly, for added variance when coming up with new notes but secondly, and arguably more 

importantly, because we don’t want to use the “best” result every single time — this would 

make the music predictable and stale. Instead, we can check all the possible notes and assign 

them with “weights”. These weights will dictate how likely the note will be chosen. By 

assigning all notes weights and putting them into a sorted table, we can choose notes that are 

relevant to our pattern a large majority of the time but not always. This also allows us to use 

notes from other patterns when there are no notes from the pattern we want that match our 

note history. By changing how notes are weighted we can come up with a few parameters 

that change the behavior of the note generation — similar to the bottom-up approach, but 

much more constrained to our input music. 

The key factors that determine note weight are whether the note in question is from 

the specified pattern being searched for and how many ngrams it matched when compared to 

the history provided. We can check unigrams, bigrams, trigrams, and quadgrams and for 

each successive match we increase the not weight further (a match for higher tier grams 

results in a larger weight increase). In order to select a note from the list of candidates (note 

weight table) we calculated the total weight of all notes in the table and selected a random 

number between 1 and the maximum note weight. Then we can just go down the table of 

notes subtracting each note’s weight until our calculated weight is less than or equal to zero. 

At this point the randomly selected note is the note that resulted in a negative/zero calculated 

weight. An example of this can be seen in Figure 3.3 below. 
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Figure 3.3 Determining a note based on its weight from a weighted table. 

 

Listing 3.3 Code showing weighted table lookup. 
// Calculate total weight 

int totalWeight = 0; 

for(Chord candidate : candidateChords) 

{ 

    totalWeight += candidate.weight; 

} 

  

// Get a random weight index 

int weightIdx = random(1, totalWeight); 

int idx = 0; 

  

// reverse sort candidate chords to get biggest in front 

sortLargestFirst(candidateChords);  

  

// Until the weight index is found subtract from it for each 

// candidate chord 

while(weightIdx > 0) 

{ 

    weightIdx -= candidateChords[idx].first; 

    if(weightIdx <= 0) break; 

    ++idx; 

} 

 

Other factors that were experimented with during the creation of our demonstration included 

key signature validation. By assigning a key signature to a specific pattern we can check for 

accidentals (notes that do not follow the key signature) and try and correct/align them. Notes 

that did not follow the key signature were weighted less than those that did, effectively 
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coercing the decision to pick notes that were less likely to produce jarring sounds. 

Unfortunately given the small amount of variance in our input and the difficulty of choosing 

notes that matched the key signature while also being relevant to the melody, we opted to 

not use this feature in our final build of the demonstration. 

 

3.3    Limitations and taking the next steps 

This approach has its limitations of course, most of which were with how it was designed — 

this is partially due to the nature of the demonstration not needing to be fully fleshed out. 

One of the biggest limitations is how we chose to use MIDI. We only used the note pitches 

and arbitrarily created durations of those notes in order to create music. While this did work, 

MIDI supports much more than we used it for. Some examples include instrument damping, 

usage of velocity in notes (all our notes had the same velocity and we changed instrument 

volumes using channels instead) and control changes for channels. These factors could even 

be used in ngram generation to create more varied results and more interesting note 

weighting. 

Another big limitation of our demonstration is how we chose to store ngrams. While 

a text file with basic delimited structure works for what we needed, having to transcribe and 

modify the original music score by hand for every instrument including pitches, velocities 

and durations was extremely tedious, even for something as small as a 16-bar chord 

progression. Realistically this would be very bad for musician/composer pipeline in an 

actual project/game. A better way to store the ngram data would be directly as MIDI files 

because most musical notation software supports exporting to MIDI. This would 

significantly ease up on the amount of work that musicians/composers would need to do in 

order to implement their work into a project. This would require changing the internals of 

the ngram generator but would by extension support changes to the previous limitations 

while unlocking even more usability. This would also make using virtual instruments along 

with the MIDI easier too. 

Further work on key signature validation (almost an entire research project by itself) 

would allow for better note composition on the fly. This could be combined with another 

technique: note interpolation. Instead of generating every single note, generate “key frame” 

notes and interpolate the notes that should occur between the key frames. By itself, such a 

technique would create odd sounding scales and out of place accidents. But when combined 

with an advanced form of key signature validation and some tuning values, such a method 

could create more melodic pieces of music (notes generally don’t “jump” around as much as 

our demonstration shows). If one were to take this idea a step further and add note 

extrapolation as well, even more melodic variance could be achieved. 

One thing to note about our Procedurally Generated music is that because it was 

designed to work with a single 16-bar chord structure, it doesn’t perform well as “long term” 

music — it is very similar to minimalism however, and some people enjoy that. Listening to 

the generated music for more than 5-10 minutes would cause a loss of interest (although I 

guess that’s true for most pieces of music that are 3-5 minutes long). In order to generate 

variadic PCG music that changes enough to hold a user’s attention for longer, more layers of 

randomness in the hierarchy are needed — patterns and notes aren’t enough. Many more 

layers could realistically be added and there’s really no harm in adding more. Adding 
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another layer of randomness for “sections” (whole 16-bar sections) could add even more 

variance. Most musical pieces have defining and different sections (ignoring minimalism for 

now) that change throughout the course of the piece. Instead of using pattern generation for 

the next layer up, however, one could use Perlin Noise to also control the overall 

intensity/volume of the piece along with other tuning factors. Even just one additional layer 

provides a lot of extra “life” in the generated music much like emergent behaviors in AI. 

Lastly, for some extra “pizzaz” and fun, implementing common sound effects such 

as horror shrills, triumphant fanfares, etcetera, could add to the music in an immersive way 

that normal sound effects cannot. By mixing in the sound effects with the procedurally 

generated music it gives the sound effects a sort of “blended” nature with the rest of the 

composition. 

 

4    Applications of Procedurally Generated Music in the Context of a Planner 

Now that we have procedurally generated music and a planning system that can be used to 

predict player movement/behaviors we can put them together and see a practical application 

of one amongst the other. For our demonstration we chose to create a top-down puzzle with 

a series of doors and pressure plates that are linked to open when walked over. Because 

multiple pressure plates were locked behind multiple doors, the planner could be utilized to 

identify subgoals required in order to reach the exit. That’s where the music comes in. When 

the player is in control of the agent that navigates the world, the planner can calculate the 

next subgoal and the procedural music system tunes variables in the music generation to 

change based on circumstances in the world to provide feedback to the player. When the 

player moves away from a subgoal, the music’s activity slows down and the volume drops 

— the pan position of the audio is also changed left/right in order to signify to the player 

where the subgoal is located. 

As the player continues to reach subgoals and unlock progress to the next subgoal 

(and ultimately the final goal), the total activity of most of the instruments/channels being 

played increases — the drums for this are especially noticeable. During this, the low 

frequency part of the music track is constantly playing in the direction of the final goal, 

symbolizing the ultimate bass condition for completing the puzzle. Upon completing the 

final goal, the key signature of all the patterns in the music switch to playing a more major 

key to symbolize a triumphant victory. 

This is a very rudimentary example of how one might use player prediction and PCG 

music together to complement existing gameplay in a fluid way. Some other ideas we 

tinkered with but ultimately scrapped due to limitations included changing the tonality of the 

music being played based on how much the players movement “agreed” with the calculated 

path towards their next subgoal — a sort of musical compass. Using procedurally generated 

music and player prediction doesn’t need to be limited to just feedback, however. One could 

fully implement an entire game mechanic with this idea and, while auditory feedback as a 

game mechanic has been done before, PCG music feedback as a game mechanic doesn’t 

appear to be nearly as prevalent in the gaming industry. 
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5    Conclusion 

Whether it’s sound effects or particle systems, feedback to the user is critical to software 

design — game design specifically is no exception. By providing a way to blend feedback in 

between two existing game system architectures, we can create a new way of visualizing — 

audiolizing? — events and game mechanics. Procedurally generated music and predicting 

player actions through planning are the tools that enable us to produce this new medium. 

While the demonstration we have implemented is limited, the techniques we discussed can 

be taken to the next — and more practical — level with relative ease. We hope that the 

combination of these two architectures will be used in the future to create some incredible 

new experiences. 
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